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Abstract. The dynamics of amphiphilic films deposited on a solid surface is analysed for the
case in which shear oscillations of the solid surface are excited. The two cases of surface and
bulk shear waves are studied with the film exposed to a gas or to a liquid. By solving the
corresponding dispersion equation and the wave equation while maintaining the energy balance,
we are able to connect the surface density and the shear viscosity of a fluid amphiphilic overlayer
with the experimentally accessible damping coefficient, phase velocity, dissipation factor, and
resonant frequency shifts of shear waves.

1. Introduction

Measurements of the properties of thin adsorbed films have long constituted an important
subfield of interface studies [1–10]. Scientific and technological applications of thin films,
such as Langmuir–Blodgett (LB) films [11–20], self-assembled monolayers (SAM) [21], and
protein monolayers and multilayers [22, 23], have stimulated detailed studies of the physical
properties of such structures. With these model systems it is possible to construct multilayer
amphiphilic films with controlled monolayer thickness hj � 25 Å, and to create situations
leading to different couplings between the adsorbed film and the chemically modified
substrate [12–16]. Specifically, measurements of the surface density and viscosity of these
films are important, both scientifically and, for example, as regards their possible application
in acoustical biosensors in which they can serve as sensitive elements [13, 16, 18, 19].

The dynamic (shear) viscosity of amphiphilic films is a very important rheological
characteristic of a protein film or a fluid membrane, which is strongly dependent on the
temperature and phase state of the film, and on environmental conditions [13, 24, 25].
Usually LB or SAM film acoustic sensors operate in vacuum or in a gaseous environment.
In contrast, a lipid–water system or a protein layer adsorbed onto a solid surface in a
fluid experiences ‘wet’ conditions or a bulk aqueous medium [23, 26] at room temperature,
which can change the viscosity of the film. In addition, the biomolecular layer adsorption
process is extremely sensitive to the nature of the solid substrate, in the sense that it can
modify the overlayer structure [13, 16, 20, 21, 22]. In view of this, a rigorous description
of the dynamics of the existing interfaces of combined solid-substrate–adsorbed-layer–bulk
liquid systems, as well as of solid-surface–amphiphilic-film–gas systems seems to be much
needed.
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Figure 1. An illustration of surface shear waves (SSW) with horizontal polarization propagating
in a system of an elastic half-space with an adsorbed thin amphiphilic fluid bilayer on top. The
system is in a gaseous environment.
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Figure 2. Shear bulk waves propagating in an AT-cut quartz plate covered with a thin
amphiphilic layer. The system is immersed in a bulk liquid.

In the present paper we investigate the dynamics of thin amphiphilic layer(s) attached
to a solid substrate oscillating in a shear mode and in contact with (i) a gas or (ii) a bulk
Newtonian liquid. Figures 1–3 show schematically the geometry of such sandwich systems.

Amphiphilic bilayer films can imitate the behaviour of a bilayer lipid membrane. The
constituent bilayer molecules are composed of hydrophilic groups attached to hydrophobic
chains of different length. The phase diagrams of such amphiphilic molecules demonstrate
a rich variety of properties and behaviour depending on temperature and water content [13,
20, 24, 27, 28]. Above the liquid-crystalline–gel transition the hydrocarbon chains are
approximately liquid, and a bilayer membrane behaves like a two-dimensional fluid in the
lateral plane due to the vanishing shear modulus of elasticity [27, 28]. Such a peculiar fluid
is isotropic in its plane but it is anisotropic in the normal direction, due to the sublayered
head-and-tail structure [24]. The viscous layer’s response to shear deformation can be
characterized by different shear viscosity coefficients, namely, the surface viscosity, ηs [13],
and a bulk shear viscosity, ηM (a component of the tensor ηjklm; index ‘M’ corresponds to
the classification according to reference [28]).

When the system is immersed in water, anisotropy can arise from water being trapped
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Figure 3. A schematic depiction of two distinct regions of a protein layer absorbed from the bulk
solution onto a solid substrate. The dotted line corresponds to the surface-adjacent amphiphilic
layer.

in the layer. This can result in a value of the overlayer viscosity, ηM , which is distinctly
different compared to the case of a gaseous (air) environment. This is especially important
for protein adsorbed layers with nonuniform interfacial domain structure and nonuniform
water distribution in the normal direction. Such nonuniformity effects have been analysed
in a recently published hydrodynamic model of ‘porous’ polymer surface films in liquids
(for a review, see reference [26] and references therein).

In the present paper, we have considered both the surface viscosity ηs and the bulk shear
viscosity ηM of adsorbed amphiphilic films. These can be measured in different acoustic
experiments, when acoustic shear waves propagate along the plane of the layer (horizontally
polarized surface shear waves) and in the direction normal to it (bulk acoustic shear waves).
In order to be able to describe both air and liquid environmental experiments, corresponding
shear viscosity coefficients, ηM ‘in air’ and ηM ‘in liquid’, have been noted.

The paper is organized as follows: in the framework of continuum mechanics we derive
in section 2 the dispersion equation for elastic shear waves propagating in the system. We
also treat the interaction between horizontally polarized elastic surface shear waves (SH
SSW) and a fluid layer adsorbed on the surface of a semi-infinite solid substrate. In section 3
we analyse the response of bulk acoustic shear waves (BAW) propagating in a finite quartz
plate with a viscous overlayer. Our results allow us to connect the surface density and shear
viscosity of amphiphilic overlayers with the experimentally accessible damping coefficient,
phase velocity, dissipation factor, and resonant frequency shifts of shear waves. These can
be measured by modern piezo-acoustical devices of different types [23, 26, 29].

2. Dynamics of a viscous bilayer film on a solid substrate oscillating in a gaseous
medium or in vacuum

Within continuum mechanics [30, 31], the dynamics of a liquid film can be described by
the equation

ρ
dvj

dt
= ρ(∂vj/∂t + (v∇)vj ) = ∂kσjk.
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This corresponds to the Navier–Stokes equation for the motion of a viscous liquid. Recently,
it was shown that hydrodynamical properties of fluid amphiphilic (lipid) films can be
analysed within the continuum mechanics scheme with viscous tensions defined as follows
[28]:

σjk = Almηjklm

Alm = 1

2
(∂lvm + ∂mvl) ∂l ≡ ∂/∂xl.

Here ηjklm is a viscosity matrix; such matrices were introduced explicitly in reference [32].
For a fluid lipid layer in the incompressible-liquid approximation and in the absence of

a pressure gradient, these expressions can be simplified [28]. In particular, for the case in
which a strain is applied along the x-direction, one finds

σxy = ηM(∂yvx).

Here the viscosity coefficient ηM is a component of the viscosity matrix ηjklm; the y-axis
is perpendicular to the layer plane.

In our model we use the notation ηM(liquid) and ηM(gas) for describing fluid films
bounded (in different experiments) by a liquid or a gas.

Below, we analyse the influence of the viscosity and surface density of a thin bilayer
on the phase velocity and the damping of elastic shear waves.

2.1. Surface shear wave propagation: the semi-infinite quartz crystal substrate

We treat here horizontally polarized surface elastic waves on a solid substrate interacting
with a thin fluid double layer, which on the other side has an interface to vacuum or to a
gaseous phase (figure 1). Surface waves on plane interfaces have an amplitude which decays
exponentially with the normal distance from the solid surface on which they propagate [2].
Phase velocities of surface shear waves (SSW) V are lower than those of bulk shear waves
V0 in the semi-infinite elastic half-space (i.e. the substrate).

Let us now consider how the shear vibration of the substrate generates a viscous wave
in the adjacent fluid layer [2, 5, 17]. In the framework of fluid mechanics, the motion of
an adsorbed viscous film is described by the linearized Navier–Stokes equation:

∂vx(y, z, t))/∂t = ν1 �vx

ν1 ≡ η1/ρ1

η1 = ηM(gas).

(1)

Equation (1) is valid in the regime of small Reynolds number:

Re = ωu0h1

ν1
� 1

for small oscillation frequency ω and small amplitude u0, and for a thin overlayer thickness
h1. Here vx denotes the x-component of the velocity of the fluid film and the y-axis is
perpendicular to the z-direction of wave propagation.

The boundary conditions at the fluid–solid interface (y = 0) correspond to the
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assumption of no-slip conditions [6, 26, 28, 30]:

y = 0 vx = ∂ux(y, z, t)

∂t

σyx = η1
∂vx

∂y

σyx = C44
∂ux

∂y
.

(2)

Here ux is a component of the substrate boundary displacement vector

ux = u0 exp(κty + iqz) exp(iωt)

and κt = (q2 − ρ0ω
2/C44)

1/2
is the inverse penetration depth of surface shear waves into

the solid substrate; ω and q are the wave frequency and wavenumber, while ρ0 and C44

are the substrate density and shear modulus, respectively. The substrate boundary motion
is described by the equation

ρ0üx = C44

(
∂2ux

∂y2
+ ∂2ux

∂z2

)

which corresponds to elastic vibrations of the solid surface.
Boundary conditions at the moving interface between fluid 1 and fluid 2 (y = h1,

figure 1) follow from the condition that the friction forces must be the same [30]:

y = h1 nkσ
(1)
ik = nkσ

(2)
ik

σ
(1)
ik = −p1δik + η1

(
∂v

(1)
i

∂xk

+ ∂v
(1)
k

∂xi

)

σ
(2)
ik = −p2δik + η2

(
∂v

(2)
i

∂xk

+ ∂v
(2)
k

∂xi

)

v(1)
x = v(2)

x v(1)
z = v(2)

z = 0.

(3)

At the free surface, finally, the boundary condition is

y = h2 η2
∂v(2)

x

∂y
= 0. (4)

Equations (1)–(4), together with the equation for the elastic substrate motion, lead to the
following dispersion equation for horizontally polarized surface shear waves in our system:

κt = iωη1ξ1

C44

(ξ1/ξ2 + ε tanh(�hξ2)) exp(2hξ1) − (ξ1/ξ2 − ε tanh(�hξ2))

(ξ1/ξ2 + ε tanh(�hξ2)) exp(2hξ1) + (ξ1/ξ2 − ε tanh(�hξ2))
(5)

where ξj = (q2 + iω/νj )
1/2, j = 1, 2, ε ≡ η2/η1, and �h = h2 − h1.

Here we introduce the viscous penetration depth δ ≡ (2ν/ω)1/2 corresponding to the
distance over which the transverse wave amplitude falls off by a factor of e. For two
sufficiently thin viscous overlayers one can assume that hj/δj � 1, and we will always
consider the long-wavelength limit, where q2 � δ−2. Within these limits, we can from
equation (5) find the SSW damping coefficient as a function of the viscosities and the
surface densities of the overlayers.

The result for the damping coefficient � of the SSW—simply the imaginary part of the
wave vector q—is

� = �mon

{
1 + η2s

η1s

(
1 + η1sρ2s

η2sρ1s

(
1 + η2s

η1s

))}
. (6)
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Here ηjs ≡ ηMhj is the surface viscosity component of each layer, ρjs ≡ ρjhj is a
corresponding surface density, and �mon denotes the damping coefficient for the case of
a monolayer [17]:

�mon = q0ω
3ρ1sη1s

C2
44

.

One can estimate the value of � to be ∼10−5 for a phospholipid bilayer. Experimental
data for egg lecithin at T = 25 ◦C are taken from reference [24], which provides the
following values: bilayer thickness: hb = 46 Å; bilayer density: ρ ≈ 1 g cm−3; and bilayer
‘microviscosity’ (measured by a probe technique) η ≈ 1.2 dyn s cm−2. The resonator
frequency is ω0 ≈ 109 Hz, and C44 ≈ 2.6 dyn cm−2 is the corresponding quartz shear
modulus.

Using the dispersion equation (5), one can also obtain the change in the SSW phase
velocity, �V/V0, caused by the presence of the adsorbed bilayer. One finds that

�V

V0
≈ 1

2

(
ωρs1

V0ρ0

)2(
1 + ρs2

ρs1

)2

(7)

V0 ≡
√

C44/ρ0 = constant.

As a consequence of the no-slip and thin-layer assumptions, the SSW velocity shift
is sensitive only to the overlayer surface densities ρsj and not to their viscosities. This
corresponds to the Love type of wave propagation. Equation (7) allows one to determine
the surface density of the upper or lower half of the bilayer if the density of the other layer is
known or can be determined by an independent experiment. For the lipid bilayer (with the
same parameters as above) the SSW phase velocity shift is small, �V/V0 ∼ 10−8. However,
this shift may be detectable (of order ∼10−6) at high frequencies, ω ≈ 2π × 109 Hz, since
the SSW velocity change is a quadratic function of frequency. Such high frequencies can
be generated by modern acoustic SSW devices [29]. At low frequencies, f � 108 Hz, it is
more reasonable to use another type of shear wave for surface density analysis excited by
quartz crystals oscillating in the thickness shear mode (see section 3.2 below).

3. A solid substrate with a viscous overlayer oscillating in a bulk viscous medium

3.1. The resonant frequency and dissipation factor for bulk shear waves: the finite
quartz-crystal resonator

In addition to ‘genuine’ surface waves, another type of shear wave can propagate in the
plane of the overlayer–substrate interface. These are bulk acoustic waves (BAW). In contrast
to the SSW case considered above, the acoustical response of unloaded BAW resonators
depends on the quartz slab thickness h0 as well as on its density ρ0 and shear modulus C66:

f0 = (C66/ρ0)
1/2h0.

It has been shown [3, 6, 23, 26, 33] that the resonant frequency of such quartz plates
decreases when its surface is coated with an overlayer constituting a mass load. For a thin
surface film, uniformly covering the entire vibrating area of the slab, Sauerbrey deduced
a linear relation between the frequency change and the added mass per unit area in a
vacuum (gaseous) environment [3]. Kanazawa and Gordon [6] later described the resonant
response of quartz oscillators in bulk viscous liquids. Recent experimental and theoretical
investigations of the BAW in composite media (see references [23, 26, 33] for a review)
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have demonstrated possible applications to the study of nonuniform polymer and protein thin
films, and have included both resonant frequencies and viscous dissipation in the interface
region. Experimentally, it is convenient to obtain this viscous dissipation as the width of
the resonant frequency [26] or as the dissipation factor D [23]:

D = Edissipated/2πEstored = 1/πf τ

where τ is the time constant for the decay of the vibration amplitude.
In this section we calculate the shifts �f of the resonance frequency and �D of the

dissipation factor, respectively, for the case of a viscous amphiphilic (lipid) film attached
without slip to the surface of the quartz slab oscillating in the thickness shear mode in the
presence of a bulk viscous liquid.

The wave equation for shear waves propagating in the vertical direction (figure 2) is

∂2ux(y, t)

∂y2
= iρ1ω

η1
ux(y, t) η1 ≡ ηM(liquid). (8)

Its general solution has the form

ux = eiωt (U1e−ξ1y + U2eξ1y) (9)

ξ1 = (1 + i)/δ1.

Using the same boundary conditions (2)–(4) as above, we find for the x-component of the
liquid velocity

vx = v0
eξ1y + Ae−ξ1(y−2h1)

1 + Ae2h1ξ1

A = δ2 + εδ1 tanh
[
(1 + i)�h/δ2

]
δ2 − εδ1 tanh

[
(1 + i)�h/δ2

] .

(10)

The shift of resonant frequency �f and dissipation factor �D, due to the overlayer on
the substrate, can be calculated from the balance between dissipated and stored energy in
the system [33, 26, 23]. Using this energy balance, we find from equation (10)

�f ≈ −Im

(
η1ξ1

Ae2h1ξ1 − 1

Ae2h1ξ1 + 1

)/
2πρ0h0 (11)

�D ≈ −Re

(
η1ξ1

Ae2h1ξ1 − 1

Ae2h1ξ1 + 1

)/
πfρ0h0. (12)

In the limiting case h1/δ1 � 1, �h/δ2 � 1, we obtain for the resonant frequency shift

�fres = −f0

(
f η2ρ2

πρ0C66

)1/2{
1 + h1ρ1

(
4πf

η2ρ2

)1/2

− (4πf η2ρ2)
1/2 h1

η1

}
. (13)

This expression contains contributions from both the lower and the upper layer. For
sufficiently viscous solutions, η2 ≈ η1ρ1/ρ2, the second and third terms may be of the
same order.

In contrast, the result for �D is practically insensitive to the ultrathin overlayer
parameters. In the linear approximation, corresponding to a small value of h1/δ1, it depends
only on the upper (bulk) liquid viscosity and its density:

�D = 2f0

(
η2ρ2

πfρ0C66

)1/2{
1 − 2πh2

1ρ1f

η1

(
η2ρ2

η1ρ1
− 1

)}
. (14)
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In the limit of η2 → 0 we obtain the Sauerbrey formula:

�f = − 2f 2
0 ρh√

ρ0C66
. (15)

In the opposite case and for h1 = 0, the results of Kanazawa and Gordon follow:

�fres = −f0

(
f η2ρ2

πρ0C66

)1/2

. (16)

Formulae (14) and (15) form a set of equations. From these expressions it is possible
to determine the ηM -component of the overlayer shear viscosity and the thickness (mass) of
the adsorbed layer, and compare them with the results of surface viscosity measurements.
Also, it is possible to determine the viscosity and density of the adjacent bulk liquid if the
parameters of the overlayer are known.

It is essential to note that our model is valid for an arbitrary ratio ε between the
viscosities η2 and η1, i.e. even for ε � 1. The latter possibility may be relevant for a thin
amphiphilic substrate-adjacent film under a thick protein layer (for example, a sandwich
structure, such as the one schematically shown in figure 3, can be realized by an adsorbed
protein layer attached to the substrate via an amphiphilic self-assembling monolayer [22]).

4. Discussion

In addition to its importance in technological applications, the study of the hydrodynamic
modes of fluid amphiphilic films and adsorbed proteins is generally important for
understanding the dynamics of the swelling of lipid–water systems [28, 34, 35] and the
rheology of biological membranes. It is known, for instance, that living cell membranes,
e.g. in red blood cells, experience shear stress in hydrodynamic flow through capillaries
[36, 37]. As the lipid bilayer matrix of the membrane is a two-dimensional incompressible
liquid adjacent to an elastic protein (spectrin–actin) network, the hydrodynamics of this
layered structure is governed by the coupling of the fluid membrane to shear flows in an
external bulk liquid [36, 37].

The surface viscosity of a fluid amphiphilic film is often considered to be a two-
dimensional analogue of the bulk viscosity, and is defined as the coefficient of proportionality
between the tangential force per unit length and the gradient of the flow velocity of the liquid.
These averaged surface characteristics can be measured, e.g. by an interface shear rheometer
at air–liquid interfaces [13, 25] or by using the oscillating barrier method in a LB trough
[25]. In contrast to ηs , the ‘microscopic’ shear viscosity may be defined as a contribution
of fluid disordered chains. The ‘microviscosity’ of the membrane core can be determined
experimentally, e.g. by a probe technique, and describes the local viscosity near the probe
[24]. This ‘microviscosity’ is often identified with the true membrane viscosity. However,
this experimental technique could give rather different results, with a strong dependence on
the probe material and on the interaction between the probe and its local surroundings [24].
Both of these viscosities may be changed after the deposition of an amphiphilic layer on
the solid surface.

The results of our theory can be applied for direct acoustic measurements of surface
densities and/or shear viscosities ηs and ηM for a thin amphiphilic film after transferring
it onto the solid substrate and in both the liquid and gaseous experimental conditions. A
possible strong coupling between the end groups of the lipid layer, LB film, or SAM, and
the surface of the substrate [12–16] would improve the validity of our model; thus for the
interfacial solid–fluid region, the no-slip assumption seems to be valid.



Dynamics of viscous amphiphilic films 7807

In our work we found the dispersion equation for surface shear acoustic waves with
horizontal polarization, and solved it, as well as the wave equation, for shear bulk acoustic
waves. The solution of these equations, together with energy balance, allows us to calculate
the analytical expressions for the damping coefficients, phase velocities, dissipation factor,
and resonant frequency shifts of both types of shear wave as functions of the lipid film
surface density and two different components of its in-plane viscosity. These acoustic
waves can be excited by means of two different types of piezoelectric oscillator [23, 29].

We suggest measuring the acoustical response of the above-mentioned sandwich system
in the region of lipid phase transition, where the viscosity of the overlayer is subject to
dramatic changes. For instance, during the liquid-crystal–gel transformation of a lipid
membrane, the viscosity of the bilayer changes by more than a factor of ten, while the
membrane density remains practically constant [17, 24]. It is an interesting experimental
fact [34] that the two halves of a bilayer lipid membrane are so weakly coupled that they can
undergo the thermotropic phase transition independently. In accordance with our results,
this must provide the changes in the SSW damping coefficient, while the corresponding
SSW phase velocity shift due to the presence of the bilayer will be constant.

On a more speculative note, our results may also be valid within the segregated
(sublayer) structure model of adsorbed protein layers (figure 3). In accordance with this
model (see, e.g., [21, 22]), the structure of the protein overlayer resembles a surfactant film
composed of segregated head-and-tail regions. Recent neutron scattering experiments [22]
have provided evidence for such an anisotropic sublayer structure of protein monolayers
adsorbed onto solid surfaces through the self-assembling amphiphilic sublayer. In this case,
the relation between the upper and lower layer viscosities may vary strongly with the phase
state of the protein and the amphiphilic monolayer, respectively.
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